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Today’s agenda

■ Surface codes & their space-time requirements
■ Quantum algorithms
■ Single-qubit approximation
■ Classical logic synthesis



Logical space-time resources



Recall: stabilizer codes

■ Last class we talked (briefly) about stabilizer codes

■ Given an Abelian (commuting) subgroup S of n-qubit Pauli operators
■ The stabilizer code defined by S is the +1 eigenspace of all P in S
■ If S has k generators, it encodes n-k logical qubits

■ Example: 3-bit repetition code has stabilizer <Z⊗Z⊗I, I⊗Z⊗Z>



The surface code

■ Based on Kitaev’s toric code
■ Since 2010’s, most promising candidate for FTQEC

■ Threshold around 10-2 vs 10-5 for Steane code
■ Can be implemented on a 2D lattice (“low density”)

■ Define two types of stabilizers on a 2D lattice

■ “Turn off” stabilizers in a section (a defect) to add qubits:

Z stabilizer

X stabilizer

threshold



Fault tolerant (Clifford) gates in the surface code

■ Circa 2010’s: Braiding

■ Now: Lattice surgery
Time



Relative space-time volumes

CNOT: T distillation factory:

Babbush et al. Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity. Phys. Rev. X 2018.



A compiled FTQEC computation

Babbush et al. Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity. Phys. Rev. X 2018.



Lattice surgery

Litinski, A Game of Surface Codes, Quantum 2019.



Maybe not…



What about other non-Clifford gates?

■ Toffoli+Hadamard is also universal
■ …but the Toffoli gate is best implemented by using 7 T gates (optimal) in most cases

■ What about gates from higher levels?
■ …relies on |T> states to implement via gate teleportation
■ …but can result in more efficient implementations in some regimes



Quantum compilation



Compilation constraints & needs

■ So far we’ve been looking at the physical capabilities of QC 
■ What we can do physically
■ What we can do logically
■ Constraints (connectivity, exact vs approximate) and relative costs (fidelity, MSD)

■ Next we’ll consider the algorithmic needs and meet-in-the-middle!
■ What algorithms exist
■ How we can compile them
■ What their computational bottlenecks are



Recall: the quantum circuit model

U

0

0

0



Quantum algorithms

■ Not really a sensible algorithmic model

■ An algorithm shows that the gate is implementable over a particular gate set 
with a certain complexity
■ In particular, already have a decomposition/proof of an efficient decomposition
■ Most unitaries are not efficiently implementable over CNOT+U(2)

■ Classical: O(2n/n) (Shannon 1949)
■ Quantum: O(4n) (Shende, Markov & Bullock 2004)



Quantum algorithms circa 2000

Nielsen & Chuang, QCQI



Quantum algorithms circa 2020

Nielsen & Chuang, QCQI

Not really, but really



Quantum algorithms

■ Fourier-transform based:

■ Search-based:

■ QRAM based:

■ NISQ/hybrid algorithms:



QFT-based algorithms

1. Create superposition
2. Apply oracle O
3. Apply QFT
4. Measure

Incl. Shor, Dlog, ground-state estimation, linear systems, etc.

Compilation problems:
● Implementing the QFT
● Implementing the oracle



Search-based algorithms

1. While i < k
a. Apply oracle O
b. Apply diffusion operator

Incl. grover, optimization, amplitude amplification (used in linear systems), etc.

Compilation problems:
● Implementing the oracle



QRAM-based algorithms

1. Given classical data vector b, 
prepare quantum state (qram) |b>

2. Apply algorithm with initial state |b>

Really, specific to linear systems

Compilation problems:
● Implementing the state preparation circuit
● Whatever the algorithm is (often Fourier-based)



Hybrid algorithms

1. Select initial parameter vector theta
2. Compute expectation value of some 

observable on U(theta)
3. While expectation value is not minimized

a. Modify parameters theta
b. Go to step 2

VQE, QAOA

Compilation problems:
● Compiling a template (ansatz) circuit U for a given problem
● Route to hardware topology
● Minimizing runs to compute the expectation



What’s in the box (oracle O)?

■ Classical functions (f: {0,1}n → {0,1}m)
■ Arithmetic (Shor, DLog, HSP)
■ Cryptographic functions (Hash inversion)
■ Graph algorithms (quantum walks)
■ Search problems (e.g. SAT)
■ Optimization problems (NP-complete optimization problems)

■ Time-evolution operators (eiHt for Hermitian matrix H)
■ Fermionic hamiltonians (Quantum chemistry)
■ k-local hamiltonians (After Jordan-Wigner, physics problems)
■ General linear systems (for HHL)
■ Ansatz for variational (NISQ) algorithms



Example: Shor’s algorithm
Single-qubit gate 
approximations

Reversible circuit synthesis



Gate approximation



The Quantum Fourier Transform

■ O(n2) controlled-phase rotations
■ ⇒ each implemented using 3 single-qubit phase rotations

■ k >= 3 ⇒ needs approximation (over Clifford+T)!



Single-qubit approximation

■ Historically, based on Solovay-Kitaev algorithm
■ O(logc(1/e)) where c ≈ 4
■ Idea is that approximating group commutators UVU†V† centered on a point offers additional 

error suppression
■ Information theoretic lower bound was O(log(1/e)) so people wondered…

■ Solved in 2012 via the number-theoretic method, combining 2 parts
■ An optimal algorithm for synthesizing U(2, Z[1/sqrt{2}, i]) over Clifford+T
■ An algorithm for rounding off U(2) in U(2, Z[1/sqrt{2}, i]) with asymptotically optimal cost
■ Overall gate count is 3log(1/e) + O(loglog(1/e)) for Z-axis rotations



Algebraic number rings

Recall: a ring R=(S,+,•)  is a set S equipped with binary operators +, • such that

■ (S,+) is a group (every element has an additive inverse)
■ (S,•) is a monoid (multiplication is associative with an identity
■ • distributes over +

A ring extension R[a] is (roughly, if a is algebraic) “R-valued polynomials in a”

E.g.,           R0 + r1a + r2a
2 + r3a

3 + … rka
k



D[ω]

Ring of dyadic fractions:
               D = {a/2b | a, b are integers}

D[ω] = Z[1/sqrt{2}, i] is obtained by adjoining an 8th root of unity to D:
                D[ω] = {a + bω + cω2 + dω3 | a,b,c,d dyadic fractions}

The least denominator exponent (lde) of r in D[ω] is the smallest b such that 
                  r*sqrt{2}b = a + bω + cω2 + dω3 | a,b,c,d are integers



LDE-based Exact synthesis

■ (Kliuchnikov, Maslov, Mosca, 2013) U(2,D[ω]) = <H, T>
■ (Giles & Selinger, 2013)                    U(n,D[ω]) = <H, CNOT, T>
■ Proof in either case is by giving an exact synthesis algorithm

LDE-based exact synthesis:
1. Given an n by n unitary U = [u1  u2 … un]
2. For i from 1 to n

a. While lde(ui) > 0
i. Pick two rows of ui with maximal LDE

ii. Apply HTk on those rows to reduce their LDE

Important: T-optimal for 1 qubit



Example



Ring round-off

■ A few different methods…
■ Ross & Selinger’s 2016 grid-synth algorithm gets (almost) optimal T-counts
■ Rough sketch

■ Enumerate points within a region of the unit circle in order of increasing LDE
■ Given such a point u1, find a point u2 that gives a unit vector [u1 u2]T

■ Requires solving a diophantine equation…
■ …But in practice get second from optimal efficiently



Open questions for gate approximation

■ Optimal approximation of non-Z-axis rotations

■ Optimal approximation & synthesis over <H, diag(1, exp(i pi / 2^k))>

■ Trade-offs with probabilistic techniques
■ Repeat-until-success circuits known which approximate with expected T-count just log(1/e)

■ Trade-offs with (cascading) gate teleportation
■ If can get 50% shorter sequences with sqrt{T}, is it worth the cost of cascaded teleportation?

■ Gate sets which fill up the Bloch-sphere most efficiently
■ Called “golden gates”
■ Number-theorists have at least partially solved this

■ For which gate sets do there exist similar characterizations?



Number-theoretic characterizations

A number of other such exact characterizations exist:

■ U(n,D)                      = < Toffoli, H⊗H >
■ U(n, D[sqrt{2}])      = < Toffoli, H, CH >
■ U(n, D[i])                 = < Toffoli, ωH, S >
■ U(n, D[sqrt{-2}]       = < Toffoli, ∝sqrt{H} > 
■ U(n, D[ω])                = < CNOT, H, T >
■ U(n, D[exp(2pi/2k)]) = < CNOT, H, Rk >

Philosophical implications: domains for quantum computing



Compiling classical oracles



Example: Shor’s algorithm
Single-qubit gate 
approximations

Reversible circuit synthesis



Classical logic synthesis

Problem: 
      Given a classical function/code f: {0,1}n → {0,1}m implement the oracle
                                      Uf: |x>|0> → |x>|f(x)>                               (out of place)
                                      Uf: |x> → |f(x)>                                          (in place)

Compilation flow:

1. Start from an irreversible, bit-wise algorithm (e.g. binary addition)
2. Make reversible by adding temporary values & uncomputations
3. Expand to Clifford+T (or other gate set)



Example: binary addition



The dark art of quantum circuit synthesis

■ Getting efficient (time & space) circuits in the end is about 
■ knowing context 

■ Is it being controlled? 
■ Is it in a larger computation which can re-use resources?

■ plus a big ole’ bag of tricks, like
■ Palindromes
■ Pebble games
■ Dirty/borrowed ancillas
■ Phase polynomials
■ Relative phases
■ Measurement assisted uncomputation



Example: controlling a sub-circuit

■ Easy!

■ Palindromes (V†UV) only require a single control:



Multiply-controlled gates

■ Problem : expanding out controls may result in multiply-controlled gates
■ Can use multiply-controlled Toffoli gates to reduce down to a single control:

■ Compute-control-uncompute pattern is highly optimizable at a quantum level



Multiply-controlled Toffoli gates

■ Bread-and-butter of reversible computation (and compilation)
■ Implement k-ary Boolean products
■ Much work has gone into optimizing these gates (+ proving lower bounds) 

using 2-control Toffoli gates

k-1 controls

k controls



Dirty/borrowed ancillas

■ Previous construction used a linear number of ancillas
■ Can get it down to 1 by temporarily borrowing other active qubits 

Problem: exponential gate count!



Linear complexity MCT with 1 ancilla

■ Solution is to split controls in half & use k/2 (dirty) ancillas 

borrowed

Uncompute 
borrowed terms

Compute all terms



How many ancillas do we actually need?

Theorem:
      Any reversible function on n >= 4 bits requires at most one ancilla to
      implement over {X, CNOT, Toffoli}, and no ancillas if it has determinant 1

Proof idea:

■ Reversible n-bit functions are permutations on {0,...,2^n-1}
■ A permutation is even iff det(P) = 1, and -1 otherwise
■ {X, CNOT, Toffoli} all have determinant 1 on n >= 4 bits
■ An odd permutation on n bits can be embedded as an even permutation on n+1 bits
■ Even permutations can be implemented without ancillas 

(Shende, Prasad, Markov, Hayes 2003)



Interaction with fault tolerance

■ Recall: it’s more efficient in practice to use Clifford+T
■ Typical compilation goes

Classical function → Reversible embedding → Toffoli gates → Clifford+T
using 7 T gates per Toffoli:

Let’s dig into this because it will tell us a lot 
about reversible computations in Clifford+T



The Toffoli gate

■ Toffoli gate is equivalent to a doubly-controlled Z up to Cliffords:

■ Doubly-controlled Z implements |x,y,z> → (-1)xyz|x,y,z>
■ Clifford+T implementation arises through the Fourier expansion of xyz



The CCZ gate

Goal is to implement

“Phase polynomial”



Relative phase

■ Common pattern is to compute & uncompute a binary product

■ 3 terms of the CCZ gate phase polynomial only involve controls, so they can 
be factored out & cancelled with the uncomputation

Selinger, quantum circuits of T-depth 1, 2012



Relative phase

Selinger, quantum circuits of T-depth 1, 2012



Measurement-assisted uncomputation

■ Can do even better on the right-hand side if we can discard the final state

Gidney, halving the cost of quantum addition, 2017

Clifford



Efficient temporary AND

T-count = 4



Upshot

■ In the limit of many ancillas, reversible computation takes
■ 2(k-2)+1 Toffolis per k-control Toffoli
■ ~4 T gates per Toffoli

■ Still need reasonable decompositions into few Toffolis/MCT
■ E.g. O(n) algorithm vs O(n2) algorithm at the Toffoli level

■ Open questions:
■ How to get the space usage down?
■ How to generalize relative phase synthesis?
■ How to generalize measurement-based techniques?
■ Tight lower bounds for the T-count of reversible computations?

■ Best known lower bounds give k T gates for a k-1 control Toffoli

Beverland et al., Lower bounds on the non-Clifford resources for quantum computations, 2019



Readings for next week

■ Posted to the website
■ Patel, Markov, Hayes, Efficient Synthesis of Linear Reversible Circuits. arXiv:quant-ph/0302002
■ Meuli, Soeken, Roetteler, Bjorner, de Micheli, Reversible Pebbling Game for Quantum Memory Management. 

arXiv:1904.02121
■ Amy, Ross, The phase/state duality in reversible circuit design. arXiv:2105.13410
■ Khattar, Gidney, Rise of conditionally clean ancillae for optimizing quantum circuits. arXiv:2407.17966

■ Send me a short (paragraph or two) summary of ONE (1) paper of your 
choice before next class

■ Be prepared to give a quick (up to 5 minutes) summary of any of the 
readings. I’ll ask for a volunteer to summarize and kick off the discussion for 
each paper


