CMPT 478/981 Spring 2025
Quantum Circuits & Compilation

Matt Amy



Today’s agenda

Surface codes & their space-time requirements
Quantum algorithms

Single-qubit approximation

Classical logic synthesis
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Recall: stabilizer codes

Last class we talked (briefly) about stabilizer codes
Given an Abelian (commuting) subgroup S of n-qubit Pauli operators
m The stabilizer code defined by S is the +1 eigenspace of all Pin S

m If S has k generators, it encodes n-k logical qubits

Example: 3-bit repetition code has stabilizer <Z®Zel, [®Ze7>



The surface code

Based on Kitaev’s toric code
Since 2010’s, most promising candidate for FTQEC

m  Threshold around 102 vs 107 for Steane code
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Define two types of stabilizers on a 2D lattice :] }3
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Fault tolerant (Clifford) gates in the surface code

Circa 2010’s: Braiding LL (lw

Now: Lattice surgery
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Relative space-time volumes

CNOT: T distillation factory:

Babbush et al. Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity. Phys. Rev. X 2018.
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Babbush et al. Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity. Phys. Rev. X 2018.

A compiled FTQEC computat



Lattice surgery

(a) Fast setup for p = 10~* (b) Fast setup for p = 1073
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Figure 23: Fast setups using fast data blocks and 11 15-to-1 distillation blocks for p = 10™* or 5 116-to-12 distillation block for
p=10"3.

Litinski, A Game of Surface Codes, Quantum 2019.



Maybe not...

d I‘<1V > quant-ph > arXiv:1905.06903

Quantum Physics

[Submitted on 16 May 2019 (v1), last revised 6 Nov 2019 (this version, v3)]

Magic State Distillation: Not as Costly as You Think

Daniel Litinski

= I‘l_{]_v > quant-ph > arXiv:2409.17595v1

Quantum Physics

[Submitted on 26 Sep 2024]

Magic state cultivation: growing T states as cheap as CNOT gates
Craig Gidney, Noah Shutty, Cody Jones



What about other non-Clifford gates?

Toffoli+Hadamard is also universal

= ...but the Toffoli gate is best implemented by using 7 T gates (optimal) in most cases
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What about gates from higher levels?

m ...relies on |T> states to implement via gate teleportation

m ...but can result in more efficient implementations in some regimes

= | I‘ (]_V > quant-ph > arXiv:1603.04230

Quantum Physics
[Submitted on 14 Mar 2016 (v1), last revised 14 Oct 2016 (this version, v2)]

An efficient magic state approach to small angle rotations

Earl T. Campbell, Joe O'Gorman
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Compilation constraints & needs

So far we’ve been looking at the physical capabilities of QC
= What we can do physically
= What we can do logically
= Constraints (connectivity, exact vs approximate) and relative costs (fidelity, MSD)

Next we’ll consider the algorithmic needs and meet-in-the-middle!
= What algorithms exist
= How we can compile them
= What their computational bottlenecks are



Recall: the quantum circuit model




Quantum algorithms

Not really a sensible algorithmic model

‘-( j}ﬂ"ftgq‘f‘ej— is @ SAT)

An algorithm shows that the gate is implementable over a particular gate set

with a certain complexity

m In particular, already have a decomposition/proof of an efficient decomposition
= Most unitaries are not efficiently implementable over CNOT+U(2)
Classical: O(2"/n) (Shannon 1949)
Quantum: O(4") (Shende, Markov & Bullock 2004)



Quantum algorithms circa 2000
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Nielsen & Chuang, QCQl
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Quantum algorithms circa 2020
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Quantum algorithms

Fourier-transform based: QRAM based:
l
a (90//7% M
10 | propore | B?’/)
Search-based: NISQ/hybrid algorithms:
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QFT-based algorithms

Incl. Shor, Dlog, ground-state estimation, linear systems, etc.

Create superposition
Apply oracle O

[~
—(~ -
Apply QFT '.
Measure "@_

Compilation problemes:
e Implementing the QFT
® Implementing the oracle




Search-based algorithms

Incl. grover, optimization, amplitude amplification (used in linear systems), etc.

While i < k NPW ‘K
a. Apply oracle O

b.  Apply diffusion operator _‘ 1
~ | ° —F—

— ) HT

Compilation problemes:
® |Implementing the oracle




QRAM-based algorithms

Really, specific to linear systems

Given classical data vector b, 1
prepare quantum state (qram) |b> @ al 90/,7%J:
Apply algorithm with initial state [b> 197 |

Compilation problemes:
® Implementing the state preparation circuit
e Whatever the algorithm is (often Fourier-based)




Hybrid algorithms

VQE, QAOA

>
initi iy optimize ©
Select initial parameter vector theta classically opl imiz€

P
Compute expectation value of some R2(9)
observable on U(theta) —[Re/2) RAS—)

While expectation value is not minimized X __—
a. Modify parameters theta _/@H R)—(=]

b.  Go to step 2

Compilation problemes:
e Compiling a template (ansatz) circuit U for a given problem

® Route to hardware topology
® Minimizing runs to compute the expectation




What’s in the box (oracle O)?

Classical functions (f: {0,1}" — {0,1}™)

Arithmetic (Shor, DLog, HSP)

Cryptographic functions (Hash inversion)

Graph algorithms (quantum walks)

Search problems (e.g. SAT)

Optimization problems (NP-complete optimization problems)

Time-evolution operators (e for Hermitian matrix H)

Fermionic hamiltonians (Quantum chemistry)

k-local hamiltonians (After Jordan-Wigner, physics problems)
General linear systems (for HHL)

Ansatz for variational (NISQ) algorithms



Single-qubit gate

Exam Ie: ShOr,S al Orithm approximations
p g k=
|0> —H * \ A

- FT; ! :
0) 1 H ° QFT,, Py

o\

0) 4 H I . Py
1> ﬁLn__QUa'ZU) Ua?‘l I — U(],..Zzn_l

Ua2k|b> = |b - o2 mod M)

|

Reversible circuit synthesis
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The Quantum Fourier Transform

21) ﬂ—?—? BBy -( )& 7 (10) + el 1))
EJ".’) H @ - \_l_ (I“) 4 @2mil0.22...20] “))
[3) l - 75 (10) + e2milos=nl 1))
|Tn—1) : —‘—?— () J5 (10) + e2il0-n-azal |1))
‘.l',,> ® - @— -\-13 (‘U) + p'-’:i:(l_f,.. 1>)
O(n?) controlled-phase rotations

m = each implemented using 3 single-qubit phase rotations

k >= 3 = needs approximation (over Clifford+T)!




Single-qubit approximation

Historically, based on Solovay-Kitaev algorithm
= O(log‘(1/e)) where c = 4
» Idea is that approximating group commutators UVUTV' centered on a point offers additional

error suppression
m Information theoretic lower bound was O(log(1/e)) so people wondered...

Solved in 2012 via the number-theoretic method, combining 2 parts
= An optimal algorithm for synthesizing U(2, Z[1/sqrt{2}, 1]) over Clifford+T
= An algorithm for rounding off U(2) in U(2, Z[1/sqrt{2}, 1]) with asymptotically optimal cost
= Overall gate count is 3log(1/e) + O(loglog(1/e)) for Z-axis rotations



Algebraic number rings

Recall: a ring R=(S,+,*) is a set S equipped with binary operators +, * such that

(S,+) is a group (every element has an additive inverse)
(S,*) 1s a monoid (multiplication is associative with an identity
» distributes over +

A ring extension R[a] is (roughly, if a is algebraic) “R-valued polynomials in a”

2 3 k
E.g., R,fratra +ra +..ra



D[W]

Ring of dyadic fractions:
D = {a/2°| a, b are integers}

D[w] = Z[1/sqrt{2}, 1] is obtained by adjoining an 8th root of unity to D:
D[] = {a+bw + cw? + dw’ | a,b,c,d dyadic fractions}

The least denominator exponent (lde) of r in D[] 1s the smallest b such that
r¥sqrt{2}° = a + bo + cw® + do’ | a,b,c,d are integers



LDE-based Exact synthesis

(Kliuchnikov, Maslov, Mosca, 2013) U(2,D[w]) = <H, T>

(Giles & Selinger, 2013) U(n,D[w]) = <H, CNOT, T>
Proof in either case i1s by giving an exact synthesis algorithm
LDE-based exact synthesis:
Given an n by nunitary U=[u, u, ... u ] [ />\
For1from 1 ton /\/;:' L %
2. While Ide(u) > 0 S
Pick two rows of u. with maximal LDE - SRy
Apply HT* on those rows to reduce their LDE P Us

Important: T-optimal for 1 qubit



Example



Ring round-off

A few different methods...
Ross & Selinger’s 2016 grid-synth algorithm gets (almost) optimal T-counts
Rough sketch

= Enumerate points within a region of the unit circle in order of increasing LDE
= Given such a point ul, find a point u2 that gives a unit vector [ul u2]"
Requires solving a diophantine equation...
...But in practice get second from optimal efficiently




Open questions for gate approximation

Optimal approximation of non-Z-axis rotations
Optimal approximation & synthesis over <H, diag(1, exp(i pi/2"k))>

Trade-offs with probabilistic techniques

= Repeat-until-success circuits known which approximate with expected T-count just log(1/e)

Trade-offs with (cascading) gate teleportation
m  If can get 50% shorter sequences with sqrt{T}, is it worth the cost of cascaded teleportation?

Gate sets which fill up the Bloch-sphere most efficiently
= Called “golden gates”
= Number-theorists have at least partially solved this

For which gate sets do there exist similar characterizations?



Number-theoretic characterizations

A number of other such exact characterizations exist:

U(n,D) = < Toffoli, H®H >

U(n, D[sqrt{2}]) = <Toffoli, H, CH >

U(n, D[i]) = < Toffoli, oH, S > o
U(n, D[sqrt{-2}] = < Toffoli, ccsqrt{H} > ».4

U(n, D[w]) =<CNOT,H, T> )

U(n, D[exp(2pi/2)]) =< CNOT, H, R >

Philosophical implications: domains for quantum computing
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Single-qubit gate

Exam Ie: ShOr,S al Orithm approximations
p g k=
|0> —H * \ A
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Reversible circuit synthesis



Classical logic synthesis

Problem:
Given a classical function/code f: {0,1}" — {0,1}™ implement the oracle
U [x>]0> — [x>|f(x)> (out of place)
Ul x> — [f(x)> (in place)

Compilation flow:

Start from an irreversible, bit-wise algorithm (e.g. binary addition)
Make reversible by adding temporary values & uncomputations
Expand to Clifford+T (or other gate set)



Example: binary addition



The dark art of quantum circuit synthesis

Getting efficient (time & space) circuits in the end is about

= knowing context

Is it being controlled?

Is it in a larger computation which can re-use resources?
m plus a big ole’ bag of tricks, like

Palindromes

Pebble games

Dirty/borrowed ancillas

Phase polynomials

Relative phases

Measurement assisted uncomputation



Example: controlling a sub-circuit

Easy!

r-————T~-—---,,u _ ~1—

__-D'—E—E—— ~
|
a = L

U

(- AT i S

Palindromes (V'UV) only require a single control:

— —_ —_ —_— —_— O



Multiply-controlled gates

Problem : expanding out controls may result in multiply-controlled gates
Can use multiply-controlled Toffoli gates to reduce down to a single control:

Compute-control-uncompute pattern is highly optimizable at a quantum level



Multiply-controlled Toffoli gates

Bread-and-butter of reversible computation (and compilation)

Implement k-ary Boolean products

Much work has gone into optimizing these gates (+ proving lower bounds)
using 2-control Toffoli gates

OY 19

———— T
k controls '

(|
|

!

k-1 controls



Dirty/borrowed ancillas

Previous construction used a linear number of ancillas
Can get it down to 1 by temporarily borrowing other active qubits

Problem: exponential gate count!



Linear complexity MCT with 1 ancilla

Solution 1s to split controls in half & use k/2 (dirty) ancillas

\

({ )

——

m borrowed

. ——— Compute all terms

~

— Uncompute

borrowed terms



How many ancillas do we actually need?

Theorem:
Any reversible function on n >= 4 bits requires at most one ancilla to
implement over {X, CNOT, Toffoli}, and no ancillas if it has determinant 1

Proof idea:

Reversible n-bit functions are permutations on {0,...,2"n-1}

A permutation is even iff det(P) = 1, and -1 otherwise

{X, CNOT, Toffoli} all have determinant 1 on n >= 4 bits

An odd permutation on n bits can be embedded as an even permutation on n+1 bits

Even permutations can be implemented without ancillas
(Shende, Prasad, Markov, Hayes 2003)



Interaction with fault tolerance

Recall: it’s more efficient in practice to use Clifford+T

Typical compilation goes

Classical function — Reversible embedding — Toffoli gates — Clifford+T
using 7 T gates per Toffoli:

® 01 Iy
= Ot KA T
TT )@éﬂ S, THH

Let’s dig into this because it will tell us a lot
about reversible computations in Clifford+T

D




The Toffoli gate

Toffoli gate 1s equivalent to a doubly-controlled Z up to Cliffords:

% (HHZHH|-

Doubly-controlled Z implements |x,y,z> — (-1)**|x,y,z>

Clifford+T implementation arises through the Fourier expansion of xyz
ey =24y —(z@y)
deyz =2x(y+2z— (y D 2))
=2+y+z—(2@y) —(202) - (yY®2)+(2dY D 2)



The CCZ gate

Goal is to implement /

CCOZ : |z, y,2) wx+y+z—(x@y)—(x€}5z)—(y@z)+(x€9y€9z)|x, v, z)




Relative phase

Common pattern is to compute & uncompute a binary product

SR — X

534 y ’

o bz =9
—L

3 terms of the CCZ gate phase polynomial only involve controls, so they can
be factored out & cancelled with the uncomputation

CCZ : |z,y, z) —r JOKDH2— @Y (202)— (yD2)+(rDyS2)

T,Y, 2)

Selinger, quantum circuits of T-depth 1, 2012



Relative phase

relaivephase
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Selinger, quantum circuits of T-depth 1, 2012



Measurement-assisted uncomputation

Can do even better on the right-hand side if we can discard the final state

X X X 3 X X - - X
¥ E y Z {

\/ =Y >/ - t\/(unp/ﬂ‘ong/ﬂd
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Gidney, halving the cost of quantum addition, 2017 Xy @ N
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Efficient temporary AND

\

phe se Correcton

X
Y

X
T-count =4



Upshot

In the limit of many ancillas, reversible computation takes
m  2(k-2)+1 Toffolis per k-control Toffoli
m ~4 T gates per Toffoli

Still need reasonable decompositions into few Toffolis/MCT
= E.g. O(n) algorithm vs O(n?) algorithm at the Toffoli level

Open questions:
=  How to get the space usage down?
= How to generalize relative phase synthesis?
= How to generalize measurement-based techniques?
m Tight lower bounds for the T-count of reversible computations?
Best known lower bounds give k T gates for a k-1 control Toffoli

Beverland et al., Lower bounds on the non-Clifford resources for quantum computations, 2019



Readings for next week

Posted to the website

m  Patel, Markov, Hayes, Efficient Synthesis of Linear Reversible Circuits. arXiv:quant-ph/0302002
m  Meuli, Soeken, Roetteler, Bjorner, de Micheli, Reversible Pebbling Game for Quantum Memory Management.

arXiv:1904.02121
m  Amy, Ross, The phase/state duality in reversible circuit design. arXiv:2105.13410
m  Khattar, Gidney, Rise of conditionally clean ancillae for optimizing quantum circuits. arXiv:2407.17966

Send me a short (paragraph or two) summary of ONE (1) paper of your
choice before next class

Be prepared to give a quick (up to 5 minutes) summary of any of the
readings. I’1l ask for a volunteer to summarize and kick off the discussion for

cach paper



